
 12th European EMME/2 Conference
 Basel, Switzerland - May 22-23, 2003

SEnC - A Sequential Enif Client

Heinz Spiess, EMME/2 Support Center, Aegerten, Switzerland

 EMME/2:

 Macro command language

 sequential dialogs ---> sequential macros

 is part of the EMME/2 program

 cannot be replaced by the user

 Enif:

 "Server" mode (enif -S <portno>)
 TCP/IP server
 remote access over LAN or Internet
 open non-proprietary protocol
 no predefined sequential order (event driven)
 direct access to the Enif "engine"
 Enif responsible for server part

 Everything is possible! :-)
 But someone has to program it first! :-(

 Enif’s basic concept of configurability:

 Parameter:
 Name, description
 Type
 Click, Bool, Integer, Float, String, Expression, Selector,Stylus, ...

 Flags
 Group specification
 send/receive/update

 One or several indexed values

 In Enif all configuration information is implemented
 by means of parameters

 Enif’s basic concept of configurability ...

 Parameter group specification:
 send group / receive group / update group

 Parameter grouping:

 ParA : Joe/Mary
 ParB : Joe/Joe
 ParC : Mary/
 ParD : /Sue/Mary

 ParA = 16 -----Joe----> ParB = 16
 ParB = 55 -----Joe---->
 ParC = 0 -----Mary---> ParA = 0 , Update(ParD)

 Enif’s basic concept of configurability ...

 Configurable objects:

 Each functional block of Enif is implemented
 as a configurable object.

 Each configurable object owns a set of
 parameters.

 System objects are those functionalities which are
 not configurable by the user.
 System parameters start with "$".

Configurable objects form a tree:

 Parameter group signal can propagate along the object tree.
 Each object has group filters to control inter-object grouping.

Typical tasks used in automated procedures:

 change the network scenario
 load a new plot configuration
 change the current view
 print the current plot
 export the current plot to an image file

Which system parameters control these functionalities?

 Some important system parameters:

 Network control:
 $LoadScenario (Integer, write-only, indexed)
 Load scenario onto network stack
 $ScenarioNumber (Integer, read-only)
 Read out current scenario number
 $ScenarioTitle (String, read-only)
 Read out current scenario title

 Plot control:
 $LoadPlotConfiguration (String, write-only)

 Load a new plot configuration from the specified file

 View control:
 $CurrentView (Box, read-write)
 Read or redefine coordinate box of current view

 Important system parameters ... :
 Network plane:

 $PrintCurrentViewNoSetup (Click, write-only)

 Send current view to the default printer

 $ExportScreenViewToFile (String, write-only)

 Export current screen view to an bitmap image file

 $ExportPrintViewToFile (String, write-only)

 Export current screen view to an bitmap image file

 $ExportEnlargementFactor (Integer, write-only)

 Increase the resolution of the bitmap image file

 Communicating with an Enif server:
 Server commands:
 lp [<parameter>]
 new <partype> <parname> [<elementtype>]
 delete <parname>
 check <expressionpar>
 eval <expressionpar> <selectorpar>
 echo <anytext>
 exit
 Parameter specifications:
 <parameter> : send/receive/update
 <parameter> = <value>
 <parameter>[<index>] = <value>

 Acknowledgments:
 "OK" -> command processed with no error
 "KO" -> error encountered

 Communicating with an Enif server:
 Simplest possible Enif client? ---------> Telnet!

 % enif -S 9009
 % telnet localhost 9009
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 OK
 new Box view
 OK
 view : $CurrentView/
 OK
 view= -1,-1,1,1
 OK
 exit
 Connection closed by foreign host.

---> Use telnet to explore Enif’s internals!

 The SEnC Program:
 An Enif client for processing sequential input files

 "Enif scripting"

 Calling sequence:

 senc <options> <file|varspec> ...

 Options:

 -d Generate debug output
 -e Continue after error
 -i Interactive mode
 -l Launch Enif automatically
 -p <port> Define port used to contact Enif server
 -q Quit after all file have been processed
 -s <server> Define host name / IP-address of Enif server
 -v Verbose output

 The SEnC Program:
 Calling sequence:

 senc <options> <file|varspec> ...

 Input files:

 contain commands that are processed sequentially

 Variable specification:

 <variable>=<value> No spaces!

 Example: SCENARIO=2000
 Automatic substitution for variable names in braces
 occurring in input commands, e.g.

 $LoadScenario[1] = {SCENARIO}

 The SEnC Program:
 Client commands:
 Commands which are not passed to the Enif server, but
 processed locally. Always start with "!"
 !set <variable>=<value>
 Set variable to specified value

 !unset <variable>
 Unset (delete) a variable

 !print <anytext>
 Perform variable substitution and output

 !wait <seconds>
 Wait for the given number of seconds

 !prompt <message>
 Issue prompt message and wait for user reply

 The SEnC Program:
 Client commands (continued):

 !function <function> [<argname> ...]
 ... commands (using {<argname>} substitution)...
 !!
 Define a function with arguments

 !call <function> [<argvalue> ...]
 Call a function with argument values

 !if <value1> <compop> <value2>
 <conditional command>
 Compare the values and execute the next
 command only if the specified condition
 is true.
 Conditions: == != < > <= >= <>

 The SEnC Program - An Example
 Header file "plotgen.sen":

 a) Creation and grouping of parameters

 new Integer Scenario
 Scenario : $LoadScenario/

 new String PlotConf
 PlotConf : $LoadPlotConfiguration/

 new Box View
 View : $CurrentView/

 new Click FullView
 FullView : $FullView/

 Header file "plotgen.sen" (continued):

 b) Creation and grouping of parameters (cont.)

 new Integer ExportEnlargementFactor
 ExportEnlargementFactor : $ExportEnlargementFactor/

 new String ExportScreenView
 ExportScreenView : $ExportScreenViewToFile/

 new Click PrintView
 PrintView : $PrintCurrentViewNoSetup/

 c) define function "scenario" to change scenarios

 !function scenario SCENARIO
 !if 0 < {SCENARIO}
 Scenario[1] = {SCENARIO}
 echo Scenario %<$ScenarioNumber>%: %<$ScenarioTitle>%
 !!

 Header file "plotgen.sen" (continued):

 d) define function "view" to select predefined views

 !function view VIEW
 !print Changing view to {VIEW} ...
 !if full == {VIEW}
 FullView = 1
 !if airport == {VIEW}
 View = -10;-3;-7;3;Airport;
 !if cbd == {VIEW}
 View = -2;-2;2;2;CBD;
 !if kildonan == {VIEW}
 View = -1.2;1.5;4.2;4.8;Kildonan corridor;
 !!
 e) define function "export" to export view to image file

 !function export FILENAME

 ExportScreenView = {FILENAME}

 !print Exporting view to file {FILENAME} ...

 !!

 Header file "plotgen.sen" (continued):

 f) define function "plot" to load plot configuration

 !function plot CONFIGURATION
 !print Loading {CONFIGURATION} ...
 PlotConf = {CONFIGURATION}
 !!

 g) define function "plot" to load plot configuration

 !function action {ACTION}
 !if prompt == {ACTION}
 !prompt Continue?
 !if wait == {ACTION}
 !wait 5
 !if print == {ACTION}
 PrintView = 1
 !if print == {ACTION}
 !print Printing view ...
 !!

 Task file "volumeplots" generates four different plots
 for the specified scenario:

 !call scenario {SCENARIO}
 !call plot autovol.e2p
 !call action
 !call view cbd
 !call action
 !call view kildonan
 !call action
 !call plot transitvol.e2p
 !call view cbd
 !call action

 Running the example - calling SEnC:

 senc -l plotgen.sen volumeplots
 No action taken, just produces flicker on
 the screen as one plots follows the next.
 Default scenario is used.

 senc -l plotgen.sen SCENARIO=2000 ACTION=wait volumeplots
 Four plots are generated for scenario 2000.
 After each plot there is a 5 second pause.

 senc -l plotgen.sen SCENARIO=3000 ACTION=print volumeplots
 Four plots are generated for scenario 3000
 and sent to the default printer.

 Availability of SEnC:

 Download from website of the EMME/2 Support Center
 http://www.spiess.ch/emme2

 Binary executables for Windows, Linux and Sun
 Source code C++ / Qt for those interested to
 program their own clients.

 SEnC is a voluntary contribution, it is
 not part of the official EMME/2 / Enif software
 distribution.

 No warranty!

 Conclusions:

 Enif provides a very powerful client/server mechanism
 for implementing scripting and remote control.

 Enif clients are completely independent of the Enif
 program. They can be programmed by anyone, using any
 programming language and providing any type of
 interface that might be needed.

 SEnC is just one simple example of such a client, whose
 aim is to automate simple repetitive tasks.

 Enif clients can also be programmed for more exciting
 tasks, such as e.g. implementing a direct interface
 with a web server, in order to allow accessing Enif
 generated plots and data over the web!

