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Abstract

In this note we look at a logit type choice model for simultaneously choosing the
N — 1 intermediate destinations in an N-legged activity chain. We reformulate the
model in terms of matrix products, and show how the demand matrices corresponding
to the individual legs of the activity chain can be computed efficiently. An extension
of the model for simultaneous destination and mode choice is also discussed, as well
as the special case of mixed mode trip chains.
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1 Introduction

Traditional trip distribution models models typically consider only trips to a single des-
tination for the purpose of carrying out a single activity (such as work, shopping, leisure,
...). While this simple model of a trip represents quite well a large fraction of the trips
that are subject of travel demand models, many “real life” trips combine more than one
activity carried out at more than one destination (such as stopping at the shopping center
on the way back from work). For this purpose, trip distribution models based on activity
chains have been developed and used extensively in the past (see e.g. Adler and Ben-
Akiva 1979, Clarke et al. 1981, Pas 1984, ...). Most of these models are stated in the
form of a multinomial logit model, in which each possible trip chain constitutes a possible
choice.

In the practical implementation of these models, however, the underlying simultaneous
choice model is often approximated by using a sequential choice model , in which the
decision on the n-th intermediate destinations is dependent only on the n — 1 previous
destinations in the activity chain, but not on the destinations still ahead. It is well known
(Domencich and McFadden, 1975) that under certain conditions, simultaneous logit choice
models can be broken into a series of sequential sub-models. This is basically the case
when the individual decisions are mutually independent. In the case of a trip chain,
however, this mutual independence is clearly not given, since it is broken by the fact that
the trip chain always has to end at the very same point it started out. Also, as Takahashi
(1988) points out, there is empirical evidence that the choice of a destination depends
substantially on the utility of possible later destinations on the same trip chain.

Nevertheless, in most practical implementations of trip chaining models, the decision
making process is in some form sequentialized, in spite of the fact that this introduces
approximations to the model computations.

In the following sections of this note, we will show how trip distribution models based
on trip chaining can be implemented keeping their full simultaneous nature, without need
for any sequentialization of the decision taking process.

2 The Three-Leg Activity Chain

Let us first look at the special case of an three-legged activity chain. Starting at the origin
p, the first leg of the trip goes to the intermediate destination g, where the first activity
takes place; then continues to the intermediate destination r where the second activity is
carried out, and finally returns back to the origin p.

Note that we shall assume that all zone indices (such as p, ¢ and r) always imply a
zone of the same underlying zone subdivision.

The logit model for distributing the total production of trip chains starting at origin
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p, T, to all possible pairs of intermediate destinations ¢ and r is given by the formula

eupq+7/q+uqr +wr+urp
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where w,,, u,, and u,, represent the utilities (or rather the negatively weighted disutilities)
associated with travelling on the three legs of the trip chain (pq), (¢r) and (rp). The
utility associated with carrying out the first activity at destination ¢ is v, and the utility
of carrying out the second activity at destination r is w,. 1,, finally, represents the total
production of trips at origin p. Note that, without loss of generality, we can assume the
utilities u, v and w to represent the weighted sum of all pertinent variables.

Since the exponential of the sum of the various utilities can be reformulated as the
product of the exponentials of each utility, it is useful to restate in terms of the transformed
variables ¢py = €77, a, = €"* and b, = ", which yields

Cpg@qCqrbrCrp

pz b :
Cpq/aqlcqlrl T'CTIp

ql7"/

(2)

YGpgrp =

The above formulation shows well that the the logit model with its additive character
of the utility is indeed a multiplicative model in which the activities to chose from are
represented by factors. Thus, it is to be noted that the discussion which follows is not
limited to logit models, but is equally applicable to any model of the form (2).

The denominator of (2), which represents to total weight of all possible choices of
intermediate destinations for trip chains starting at p, will be denoted by s,

Sp = Z CpgqCarbrerp = Z Cpqlyq Z CqrbrCrp. (3>
qr q r

While the basic result of model (2) are the number of trips (gpq-,) for each possible
chain pgrp, what for practical purposes is needed are the three demand matrices that
correspond to the travel on each of the three legs of the trip chain, i.e.

t
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It is interesting to note that the above relationships can also be formulated using matrix
notation. For this purpose, we introduce the following matrices: C' is the conductiv-
ity matrix cpy; A is the diagonal matrix containing attractivities a,; B is the diagonal
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matrix containing attractivities b,; and finally 7" is the diagonal matrix containing total
productions 1.

Using matrix notation

S =CACBC (7)

corresponds to the matrix of the total weights for all 3-leg trip chains starting at zone p
and ending at zone g. The diagonal elements of 5, therefore, correspond exactly to s,

defined in (3)

For convenience, we introduce the diagonal matrix containing the normalized trip
generation rates as

T = Tdiag(5)™". (8)

For the demand matrices that correspond to the 3 legs of the trip chain rewriting of
equations (4) - (6) in matrix notation yields

Gy = (TC)® (ACBCY, (9)
Gy = (AC) ® (BCTCY, (10)
Gs = (BC) @ (TCACY, (11)

where the operator ® indicates element by element multiplication of the corresponding
matrix operands, i.e. Z =X QY & z;; = x45y;.
This model for a 3-legged activity chain has been implemented in a macro for the

EMME/2 transportation planning system. The macro is called TCHAIN3 and is available
on the Web site of the EMME/2 Support Center at http://www.spiess.ch/emme2.

3 Multi-Leg Activity Chains

Having dealt explicitly with the special case of 3-leg trip chains, it is now relatively straight
forward to extend the results to the general case of trip chains having N legs and N-1
intermediate destinations.

We shall denote Ay, Ay, ..., Ay_1 the diagonal matrices containing the attractivities
of the zones for activities of the typen, n=1,..., N — 1.

The total weights of all possible N-leg trip chains between any pair of zones is given
by
S=C0CACAC - An_1C. (12)

Again, it is convenient to introduce the diagonal matrix containing the normalized
trip generation rates, but for the sake the symmetry in the notation, we shall call it Ag

Ay = Tdiag(S5)™". (13)
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Assuming that all indices of the matrix A are to be taken modulo N (i.e. A; =
A(imod N)), the demand matrix corresponding the the n-th trip leg, n = 1,..., N can be
written as

Gn — (An—l C) @ (AnCAn_H Tt An+N_QC)/. (14)

4 Combined Mode and Destination Choice

It is easily possible to generalize this type of distribution model to simultaneously include
mode and destination choice. For the purpose, we assume that M travel modes are
available to the traveller. For each mode m, a conductivity matrix C,, is constructed
from the mode specific travel cost matrix. In addition, each for each origin p and each
mode m, the variable f,,, represents the attractivity bias of mode m to the travellers
from origin p (i.e. the combined effect of the mode dependent socio-economic variables at
origin p). Let F,, denote the diagonal matrices containing these bias variables for mode
m.

We shall denote A,,, the diagonal matrices containing the attractivities of the zones
for activities of the type n and travel by mode n. Note that these attractivities can vary
with the mode used (e.g. parking availability of cost), but they don’t have to necessarily.

The total weights of all possible N-leg trip chains of all modes between any pair of
zones 1s given by

Again, it is convenient to introduce the diagonal matrices containing the normalized
trip generation rates for mode m as

Ao = Tdiag(S)™"F,. (16)

Using again the modulo N convention for the first subscript of A, the demand matrix
corresponding the the n-th trip leg, n = 1,..., N can be expressed as

Gnm = (A(n—l)mc’m) @ (AnmCmA(n+1)mCm e A(n+N—2)mCm),- (17)

5 Mixed-Mode Trip Chains

The type of analysis presented in the previous sections can of course also be applied to trip
chains in which more the one mode is used within the same trip chain. A typical example
for this category of problems is the choice of the parking site for park+ride travellers, is
is briefly outlined in this section.
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We assume the following logit model for choosing between parking sites:

e pk +vk +“kq

Z eup’“'+vk’+“k'q

k!

PR
gpkq - gpq

: (18)

where g, corresponds to the number of trips between p and ¢ choosing parking site k
according to the mode specific utilities u)y (auto mode) and wuj; (transit mode) and the

attractivity variable of parking at zone k, vg. Using the transformed variables c,; = e gqU,
Cpy = ¢"pd and a, = €, we obtain
pk GkChy
kg = g;éiA- (19)
Z ka/aklckl
In matrix notation, the denominator can be written as
S = CAUACTR (20)
and the matrix T is defined as
T - GPR @ S, (21>

where the operator ¢ is used to indicate element-by-element division. The intermediate
auto and transit demand matrices resulting from the above model can now be written in
matrix notation as

Gro = (CroA) @ (TCLy), (22)
Girw = (AC) @ (CloT). (23)

The average auto and transit impedances for the park+ride trips from p to ¢, @, and

u' ', can be computed as

pq’

AU AU AT
T — 2k gpkqupk _ 2k Upk Cpk akckq

= 24
pq _(];;‘ Spq ’ ( )

e Shgpl) _ S o ”
Py PR - ) ( )

gpq Spq
whereas the average parking cost paid by park+ride trip from p to ¢ is

_ >k GpkqUk 2ok Cpk QKVKCL,
Upg = - = ) (26)

gpq Spq
In matrix notation, the park+ride impedance and cost matrices can be written as

UAU = ((UAU ® CAU)ACTR> %) S, (27)
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UTR = (CAUA(OTR ® UTR)) %) S, (28)
V=(Cx(A2V)Cr) 0 S. (29)

Note that the above formulae are not limited to compute the impedances and parking
costs of the park+ride trip, but they can also be applied to any other auto or transit at-
tribute, such as distance or fare, by simply substituting the matrix U by the corresponding
attribute matrix.

The computations of the first and secord leg intermediate matrices for mixed mode
trips according to (22) and (23) have been implemented in a macro for the EMME/2
transportation planning system. The macro is called MIMOLEG and is available on the
Web site of the EMME/2 Support Center at http://www.spiess.ch/emme2.

Note that the model presented in this note do not consider any capacities limitations
at parking lots. For a detailed discussion of modeling mixed mode trips with explicit
capacities at intermediate destinations see Spiess (1996).

6 Conclusions

We have shown that logit type distribution models that are based on activity chains can
computed directly without any need to approximate the behavioral assumptions through
the introduction of a sequential decision model. Thus the traveller decides for a trip
chain in its entity, i.e. all intermediate destinations (as well as the mode, in the case of a
combined model) are chosen simultaneously.

We showed that these models can be reformulated as simple matrix expressions, in-
volving only simple operations such as algebraic matrix multiplications and element-by-
element matrix multiplications. This also means that they can be efficiently implemented
in any transportation planning software packages which includes matrix calculation facil-
ities which include these two types of operations. The EMME/2 transportation planning
system (Spiess 1984, INRO 1992) includes very flexible matrix manipulation tools. These
have been used to implement activity chain based distribution models by directly applying
the formulae developed in the preceding section. Macros have been written to automate
the computations. This shows that direct implementation of activity chain based trip
distribution models are not just theoretically possible, but also practically feasible, even
for large scale applications.
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