
S
EnC

SEnC – A Sequential Enif Client
(based on SEnC Version 3.5)

Heinz Spiess ∗

June 2003

Abstract

This paper describes the program SEnC (Sequential Enif Client), which is a simple command
line based Enif client which allows to communicate with an instance of the Enif program in order
to automate simple repetitive tasks.

Before describing the SEnC program itself, the basic concepts of parameters and configurable
objects, which are the foundation on which Enif’s configurability is based on, are reviewed, fol-
lowed by a general introduction of the Enif server mode and the command protocol used for the
communication between the Enif server and Enif client programs.

In the second part of the paper the SEnC program is discussed, including detailed description
of the calling sequence, the command line options, the variable substitution mechanism and the
client commands (i.e. commands which are executed locally within SEnC), which include function
definitions and conditional execution of commands.

While we hope that the availability of SEnC will be of direct practical help to those users who
want to automate well defined repetitive tasks (such as e.g. the printing or exporting of standard
set of graphic output), the paper might also be interesting to all those who need to program their
own Enif client and just want to become acquainted with the basic principles of Enif’s client/server
interactions.

This is an enhanced and revised version of a paper which was initially presented at the 12th Eu-
ropean EMME/2 Users’ Conference, held in Basel, Switzerland, on May 22-23, 2003.

∗EMME/2 Support Center, Haldenstrasse 16, CH-2558 Aegerten, Switzerland

1

mailto:heinz@spiess.ch

Introduction

Besides the powerful transportation modeling capabilities offered by the EMME/2 transportation plan-
ning package [4, 1], one of its main features is certainly its macro language which allows complex
procedures to be automated and standardized.

EMME/2’s new graphic interface program Enif [3, 2] provides an even more powerful mechanism for
controlling the programs from the outside. This is done using Enif’s server mode, which allows ex-
ternal client programs to communicate with Enif via an openly specified TCP/IP protocol. Compared
to EMME/2 macros, which are directly modeled after EMME/2’s sequential dialogs, the client/server
approach is more suitable to Enif’s inherently non-sequential, event-driven operating mode. It allows
arbitrary client programs to be implemented at the user level. Such a client can either be programmed
to directly perform some application specific task, like e.g. implementing an interface to a web server
which makes Enif generated data and graphics available on-line. Or, alternatively, it can implement
a more general interface which only provides the necessary framework which can then be used, via
some sort of scripting feature, to perform all kind of different tasks, without any need to write or modify
the client program.

The SEnC program presented in this paper is a simple Enif client which belongs to the second cate-
gory. Essentially, its goal is to read sequential Enif configuration commands from input files and feeds
them to a running Enif server. This allows the SEnC program to be used as some kind of “macro”
processor, which can be used to automate simple tasks, such as e.g. generating automatically the
same standard set of graphic output for each new scenario that has been assigned, running an “au-
tomatic” Enif demonstration, or performing standardized performance benchmarks and/or software
validation tests.

An important design goal of SEnC is that the program concentrates exclusively on interfacing with
the Enif server protocol. This means that the SEnC program does not depend at all on any particular
functionalities of Enif (except for the server’s TCP/IP protocol, of course), nor does it make any
assumptions on the type of Enif operations the user might want to control with SEnC. This ensures
that a particular version of the SEnC program is not restricted to run on a particular release of Enif.
So, as new functionalities are added to Enif, they may be readily accessed without the need to modify
the SEnC program.

SEnC’s “ignorance” of Enif’s functionalities implies that all tasks that SEnC will perform must nec-
essarily be defined from scratch in the input files processed by SEnC. In order to avoid having to
“reinvent the wheel” each time SEnC is used for a new task, the input commands are usually read in
two parts. First “reusable” header files are read in to define useful standard functionalities and bring
them into an easily usable form. The file defining the actual task to be carried out is then based on
the functions that are defined by the header file and are thus much shorter and easier to understand,
even without in-depth knowledge of the internal workings of Enif.

Enif Parameters and Configurable Objects

In order to understand how an Enif client, including the SEnC program described later on, interacts
with the Enif server, it is necessary to have some basic knowledge on Enif’s general configuration
mechanism. But note that the following explanations are limited to provide the bare minimum needed
for a basic understanding. A more complete and detailed description of the concepts outlined below
can be found in [2].

The fundamental building block of Enif’s configurability is the Parameter . In a nutshell, a parameter
is defined by:

2

• an identifying name and a plain text description,
• its type (such as Click, Bool, Integer, Float, String, Expression, Selector, Stylus, ...) defining the

type of data stored,
• a set of optional flags specifying special properties of the parameter,
• an optional group specification consisting of send, receive and update group.
• one or more indexed values of the specified type.

Enif’s grouping mechanism is activated whenever the value of a parameter is changed. If the pa-
rameter has a non-empty send group, a group signal is propagated to other parameters, causing
those parameters having the same receive group (and a compatible type) to synchronize automat-
ically to this same value. Parameters having the same update group will, instead of changing their
value, perform an update action, which depends on the type of the parameter and its properties.

The parameters are used to provide configurability to Enif’s functionalities. Each of Enif’s basic func-
tionality (e.g. plot, mapper, list, configurable attribute, . . . , or also the Enif TCP/IP server) constitutes
a configurable object . Each configurable objects has it’s own set of parameters, or, in other words,
each parameter is owned by a configurable object.

The configurable objects are organized as an object tree , which implies that a configurable object
has a parent object and can create its own child objects.

The parameter grouping mechanism described above is not restrained to the set of parameters of a
single configurable object, but it can also be used to synchronize parameters belonging to different
configurable objects. This is done by propagating the group signals along the configurable object
tree. In order to control the propagation of the group signal, each configurable object has its own
group filters (implemented themselves as string parameters) which define which groups can enter
and leave the object. The figure below shows a typical Enif object tree, as it is displayed by Enif in
configuration mode when selecting the option “Show configurable object tree”:

3

Having understood the above mechanism, it is easy to see that storing or loading an Enif configuration
(e.g. a plot or a list) can be done simply by writing or reading a file which contains the list of the
corresponding configurable objects, and for each object the specification of its set of parameters.
Given that the configurable object itself defines name, description and type for each of its parameters,
the bulk of the configuration files (such as *.e2p plot configurations or *.e2l list configurations)
consists in commands specifying the parameter’s values and group specifications. In their simplest
form, the groups of a parameter are specified with commands of the type

parameter : send[/receive[/update]]

and parameter values are specified with commands like

parameter = value

for non indexed parameters (i.e. value at index 0) or

parameter [index] = value

for setting the value for a specified index.

As explained later, the above parameter specification command are not only used in Enif’s configu-
ration files, but in exactly the same way they also constitute the basic Enif server mode commands
for changing the values and characteristics of Enif parameters.

Some Useful Enif System Parameters

In Enif, the configurable objects are divided into system objects and user objects. User objects
correspond to those that are loaded by the user from corresponding configuration files, whereas all
configurable objects that are generated and maintained directly by the Enif program are referred to
as system objects.

Parameters associated with system objects are called system parameters. Their name always starts
with a dollar sign and their group specification (which, of course, is system defined as well) usually
corresponds to the parameter name.

Many of the basic tasks that one would like to automate, are controlled by system parameters, such
as e.g.

• changing the network scenario,
• loading a plot configuration,
• changing the current view,
• printing the current plot,
• exporting the current plot to an image file,

Thus, it is useful to look at some of available system parameters that are of particular practical
importance. In the following, we briefly explain those system parameters which allow performing the
above tasks and which will be used in the examples later on:

$LoadScenario (Type Integer, write-only, owned by Network control)
This write-only parameter allows manipulating the network stack. Writing an integer value
into index 0 will load (“push”) the corresponding scenario as an additional network onto
the network stack. Writing an integer value into index i > 0 will replace the network at
position i in the network stack by the corresponding scenario. After the operation has
been executed, the values will always be reset to zero, in order to be ready for the next
operation.

4

$ScenarioNumber (Type Integer, read-only, owned by Network)
$ScenarioTitle (Type String, read-only, owned by Network)

These two system parameters contain the scenario number and the scenario title of the
network which is currently loaded at position 1 of the network stack.

$LoadPlotConfiguration (Type String, write-only, owned by Plot control)
If a file name is written into this write-only system parameter, the file is opened and the
corresponding plot configuration is loaded and displayed.

$CurrentView (Type Box, read-write, owned by View control)
This parameter always contains the coordinates of the current view. Since it is a read-
write parameter (i.e. both its send and receive group is defined as $CurrentView), it
can be used for retrieving the coordinates of the current view (by receiving its value) as
well as imposing a new view (by sending the new coordinates to $CurrentView .

$PrintCurrentViewNoSetup (Type Click, write-only, owned by Network plane)
If this parameter is activated by a receive or update group signal, it will cause the current
view to be printed using the current default printer and printer settings.

$ExportEnlargementFactor (Type String, read-write, owned by Network plane)
This parameter contains a small integer factor (1,2,3,. . .) which is used to enlarge the
resolution of exported image files by the corresponding factor. Using enlargement factors
larger than one allows the generation of bitmapped image files that exceed the current
screen resolution. Note, however, that the file size of the exported image, as well as the
time needed to generate the image, increases with the square of the enlargement factor
– so don’t exaggerate!

$ExportScreenViewToFile (Type String, write-only, owned by Network plane)
If a file name is sent to this system parameter, an image file is generated containing the
current screen view, using the image format which by default corresponds to the specified
file extension (such as .jpg , .png , .bmp , etc.).

$ExportPrintViewToFile (Type String, write-only, owned by Network plane)
If a file name is sent to this system parameter, an image file is generated containing the
current print view (i.e. the same information which would be sent to the printer), using the
image format which by default corresponds to the specified file extension (such as .jpg ,
.png , .bmp , etc.).

Communicating with an Enif Server

Enif’s server mode is activated by calling Enif with the command line option “-S port ” (where port
is the number of the TCP/IP port which is to be used by the server). The only difference, compared
to running Enif not in server mode, is that this option will install an Enif TCP/IP server configurable
object as a child object of the primary Enif instance. This server object binds itself to the specified
TCP/IP port and waits for client programs to open a connection.

When a client opens a connection, an Enif socket object is created as a child of the server object and
a communication stream is established between the external client program and the corresponding
socket object. When created, this object only defines the standard parameters needed for all objects
(such as name, description, group filters, . . .), leaving it up to the client program to create additional

5

parameters as needed.

The client program can now send commands to Enif which then will be executed within Enif and
the result will be sent back to the client. The result always ends either with positive or negative
acknowledge, usually “OK” to indicate a successful command, respectively “KO” to indicate that the
command could not be executed correctly.

The complete list of Enif server commands along with detailed technical specifications can be found
in [2]. Here, we will just mention some of the more important ones:

lp [parameter]
List the specified parameter or, if no parameter is given as argument, list all parameters of the
current object.

new partype parname [elementtype]
Create a new parameter of type partype with the name parname. The most used parame-
ter types partype are Click , Bool , Integer , Float , Expression , Selector , String ,
Stylus and Box. For parameters which need further specifications, these are given after the
parameter name. For expressions and selectors, e.g., the type of network element they refer to
is given by elementtype as Nodes , Links , Lines , Segments , Turns , etc.

delete parname
This command is used to delete the parameter parname which was previously created with a
“new” command.

check expressionpar
Check if the given parameter expressionpar, which must be of type Expression or Selector, con-
tains a valid expression. The type of acknowledgment (OKresp. KO) indicates if the expression
is valid or not.

echo anytext
The given text anytext is passed through Enif’s parameter substitution to replace occurrences
of the type %<. . . >%and the result is returned to the client.

exit
Close the socket and terminate the communication stream between the client program and Enif.
Note that this command does not terminate the Enif process.

Besides the above server commands, the server also accepts the standard parameter specification
commands which we already encountered in an earlier section of this paper, namely:

parameter : sendgroup[/receivegroup[/updategroup]]
Set the group specification of parameter.

parameter = value
Set the value of a non-indexed parameter (resp. set value at index 0).

parameter [index] = value
Set the value of an indexed parameter.

Having learned about the Enif server commands, let’s try them out now. Even without having access
to a specific Enif client program, it is possible to do this using the standard telnet program.

To do this, just start Enif in server mode using e.g. port 9090 with the command “enif -S 9090 ”.
Now, from a unix shell or CMD window, you can contact the Enif server with the command “telnet
localhost 9090 ” and try out some of the above commands.

6

The first example just changes the current view from its current setting to the coordinate window
(-1,-1,1,1). To do this, a Box type parameter named view is created and its send group is set to
$CurrentView/ , i.e. the receive group of the corresponding system parameter. When we then
change the value of the parameter view to “-1,-1,1,1”, Enif’s parameter grouping will propagate a
send group signal which is caught by the $CurrentView system parameter, which causes Enif’s
view to be changed accordingly.

%telnet localhost 9090
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is ’^]’.
OK
new Box view
OK
view : $CurrentView/
OK
view= -1,-1,1,1
OK
exit
Connection closed by foreign host.
%

The second example contacts the enif server to generate a list of all links having an auto volume of
more than 3000, sorted according to decreasing link volumes. To do this, a link expression parameter
named linkval and a link selector parameter named linksel are created and their values are set
to the desired expressions. The check command is not absolutely necessary, but it would show
if the specified expression would not be valid (e.g. if the current scenario would not have an auto
assignment). The eval command, finally, is used to evaluate the expression linkval by iterating
through all links selected in selector linksel and the corresponding results are output:

% telnet localhost 9090
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is ’^]’.
OK
new Expression linkval Links
OK
new Selector linksel Links
OK
linkval = volau,volad,timau,speedau
OK
check linkval
OK
linksel = volau>3000,-volau
OK
eval linkval linksel
609-608;3329.708;55;2.508259;8.133132
458-59;3209;0;1.2;10
705-713;3140.356;23.07692;0.617797;11.65431
611-610;3132.645;55;2.741341;10.06806
665-674;3105.219;0;0.811095;23.67171
668-665;3105.219;0;1.066585;12.37595
669-668;3105.219;0;1.308991;12.37595
516-608;3035.614;29.79895;0.454977;26.37496
517-516;3035.614;29.79895;0.432228;26.37496
607-606;3027.583;159.174;1.369371;10.07762

7

610-609;3016.525;55;1.423182;11.38294
OK
exit
Connection closed by foreign host.
%

These two little examples using telnet should already give you an idea on the principles Enif’s server
is built upon. We now turn our attention to SEnC, a simple Enif client program which processes server
commands that are read sequentially from given input files.

Calling the SEnC Program

The SEnC program is called as follows:

senc [options] [file|varspec ...]

where the specified input files contain the commands which are to be processed by the program. For
the server commands discussed in the last section, this just implies sending the commands one by
one to the Enif server and receiving the corresponding results.

The following command line options are recognized:

-d Generate debugging output. Specifying this option several times will
increase the amount of debugging output which is generated.

-e Continue with input processing after errors. Unless this option is set,
SEnC will stop processing the input as soon as it received a negative
acknowledge (KO) from the Enif server.

-h Display this help summary.

-i Run SEnC in interactive mode. In interactive mode, the processed com-
mands as well as the received replies are displayed in a separate win-
dow. In addition to executing commands read from the input file, in
interactive mode it is also possible to enter server commands directly
from the keyboard.

-l Launch the Enif program on the local machine upon starting SEnC and
exit Enif when SEnC terminates. After having created the Enif process,
SEnC waits for 3 seconds until it tries to contact the Enif server. when
accessing a very large network and/or when using a slow or otherwise
busy system, this delay may not always be sufficient. In this case, the
-l option can be repeated more than once, each time adding another 3
seconds to the delay. Note that under Windows, SEnC tries to execute
the program senc.exe , under Unix-like systems the program senc is
used. In both cases, the corresponding program if first looked for in the
standard locations pointed by the environment variables ENIFPATH or
EMME2. Otherwise the called program must be located in a directory
which is included in the user’s PATHenvironment variable.

-L progname This option is similar to the -l option, but it contains an additional argu-
ment which allows the specification of the program name that is used
to launch Enif. By default the program name enif is used. This option
may be useful in situations (like testing of benchmarking) where several
version of Enif coexist on the same system.

-o outputfile Direct the standard output to the specified file.

8

-p port This option defines the TCP/IP port used to communicate with the Enif
server.

-q Quit after all input files are processed. This is the default unless running
in interactive mode using the -i option.

-s server This option allows the specification of the host name or IP-address of
of the system on which the Enif server is running. By default, the Enif
server is assumed to run on localhost .

-v Generate verbose output.

SEnC also contains a simple mechanism which allows to perform variable substitution on the pro-
cessed input commands. This is done by specifying on the command line, before or between input
files, arguments of the form variable=value (no spaces allowed!). If such an argument is processed,
SEnC will create a corresponding variable, if it does not exist yet, and set its value to string left of the
equal sign. Variables which are defined in this way can be used for substitution in commands which
are subsequently processed. If such a command contains the string { variable} , it will be replaced by
the current value of the parameter before the command is executed.

Let’s now come back to our second telnet example of the previous section. Assume that, for whatever
reason, we would need to automate the process of creating a list of links with auto volumes exceeding
3000. Having SEnC, we could simply store the server commands we previously typed into the telnet
session into a file, say, named example1

new Expression linkval Links
new Selector linksel Links
linkval = volau,volad,timau,speedau
linksel = volau>3000,-volau
echo Scenario %<$ScenarioNumber>% (%<$ScenarioTitle>%):
eval linkval linksel

and then run SEnC with the command

senc -l example1 >linklist.out

to obtain in the file linklist.out the lines:

Scenario 3000 (Kildonan Corridor):
609-608;3329.708;55;2.508259;8.133132
458-59;3209;0;1.2;10
705-713;3140.356;23.07692;0.617797;11.65431
611-610;3132.645;55;2.741341;10.06806
665-674;3105.219;0;0.811095;23.67171
668-665;3105.219;0;1.066585;12.37595
669-668;3105.219;0;1.308991;12.37595
516-608;3035.614;29.79895;0.454977;26.37496
517-516;3035.614;29.79895;0.432228;26.37496
607-606;3027.583;159.174;1.369371;10.07762
610-609;3016.525;55;1.423182;11.38294

If in addition, we want to be able to specify the scenario for which these links should be listed, we can
change the input file to select the scenario by grouping with the system parameter $LoadScenario
and use a variable which can then be set on the command line. The modified example input file
example1a becomes then:

9

new Integer scenario
scenario : $LoadScenario
scenario[1] = {scen}
new Expression linkval Links
new Selector linksel Links
linkval = volau,volad,timau,speedau
linksel = volau>3000,-volau
echo Scenario %<ScenarioNumber>% (%<ScenarioTitle>%):
eval linkval linksel

We can produce the link list for a specific scenario, say scenario 1000, by calling SEnC as follows:

senc -l scen=1000 example1 >linklist1000.out

We conclude this example with a screen shot of the interactive mode display window that is displayed
if the option -i is added to the above command. On screen, the displayed texts are color coded:
the server commands sent from SEnC to the Enif server appear in blue, the output received from the
Enif server in black, the client commands (which are discussed later on) in green, and interactively
entered server commands are shown in red.

Note that the above example is also interesting since it does not use any of Enif’s graphic capabilities
at all, but it just uses Enif to access data from the EMME/2 data bank, using Enif’s powerful expression
and selector features. This opens the possibility for external programs which need to access some
data from the EMME/2 data bank to incorporate an Enif clients and access the data bank via the Enif
client/server interface. It avoids having to run EMME/2 macros to first punch out the desired data to
sequential files from which it can then be read into the external program, or it provides a safe and
protected alternative to the potentially dangerous method of having the external program read directly
binary data from the EMME/2 data bank.

10

Combining Enif server command with SEnC’s variable substitution mechanism already allows writing
more flexible scripts, in which some of the information is not “hard-coded” but can be provided at run
time, without any need to edit the command file.

SEnC Client Commands

In order to provide possibilities for even more powerful Enif scripting, SEnC also supports its own set
of client commands , i.e. commands which are not sent to the Enif server, but which are processed
locally by the SEnC program.

Client commands are easily recognizable since they all start with an exclamation mark. If such a line
is detected in the input stream, instead of being sent to the Enif server, it passed to a SEnC’s local
command parser.

The current version of SEnC supports the following client commands:

!include filename
This command causes SEnC to open the specified file and process the commands it contains
before continuing with the next command. The !include command can be used to read in
header files containing required function libraries (as an alternative to specifying the required
header files directly in the command line). Also, the !include command is convenient in
interactive mode for telling SEnC to process an input file.

!print anytext
This command prints the given text to the standard output, after having passed it through
SEnC’s variable substitution (if any), but without passing it on to the Enif server. Thus, if the
text does not contain any Enif parameter substitutions %<. . . >%, the print command produces
the same output as a corresponding echo server command, but is much more efficient, since
it is handled locally.

!wait seconds
Pauses for the specified number of seconds (which can be specified with decimals if small
delays are required) before the next command is processed. This command may be useful for
automated demonstrations in which each image should stay on the screen for some specific
amount of time.

!prompt message
Prompt the user with the specified messages and wait for the user to enter an answer. The
typed in answer will be written to the special variable ANSWERwhich can be accessed via
variable substitution by putting the string “{ANSWER}” as a place holder. This command may
be useful in situations where the user should be given time to take some action (e.g. interacting
directly with Enif) before the processing of the commands should be continued.

!exit status
Terminate SEnC immediately, without processing the remaining commands. If an integer value
is specified as argument, it is used passed to the operating system as exit status code.

!new variable = value
Create a new variable or, if the variable already exists, create a new instance of this variable
and set it to the specified value.

!set variable = value
Set the topmost instance of the specified variable to the given value. If the variable does not
yet exists, create it.

11

!delete variable [variable ...]
Delete the topmost instance of the specified variables.

!replace variable regexp [newstring]
In the specified variable all occurrences of the regular expression regexp are placed by the
string newstring. If newstring is not specified, a single blank is used by default.

!begin
...
commands
...
!end

Command enclosed between a !begin and an !end command constitute a command block
which can be used instead of a single command in composed commands that are described
below.

!function fctname [argname ...]
The !function client command defines the function with the given function name to consist of
the line or the following block of lines that is included between !begin and !end commands.
Optional function arguments can be defined after the function name. Any occurrence of one of
the function arguments enclosed in braces, { argname} , will be replaced by the corresponding
argument value with which the function is called via the !call client command. Note that
!function commands are not allowed within function definitions.

!call fctname [argvalue ...]
Call the function fctname using the argument values which are specified after the function name
to substitute the function arguments.

!return
The !return command can be used in function definitions to return from the function before
having reached the end of the function. Note that before returning from the function, it is up to
the programmer to delete any private instance of variables which have been created with !new
client commands within the function body.

!if value
!if val1 compop val2

The !if command cause the execution of following command or command block to be condi-
tional to the specified test. If the first form is used, i.e. if only one value is specified, the condition
is only met when the specified value is either a non-zero numerical value or the string “yes ”.
If the second form is used, the two values val1 and val2 are compared using the comparison
operator compop, as shown in the following table:

String comparisons:
== equal
!= not equal

Numeric comparisons:
= equal <> not equal
> larger than < less than
>= larger or equal <= less or equal

Note that the comparison operator must always be separated by at least one blank from values
which are compared, i.e. the command “!if {X} > 1 ” will work as expected, whereas the
command “!if {X}>1 ” will not!

!iferror
This command is similar to the !if command described above. But instead of testing the
given argument values, its condition is the acknowledgment received in response to the last
server command. If the preceding server command was successful (OK reply), the following
command or command block is skipped, whereas if it returned with an error (KO reply), the
following command or command block is executed.

12

!else
The !else command can optionally follow just after the conditional command or command
block of any !if or !iferror command. Only if the condition of the preceding if-command
was not satisfied, the command or command block following the !else command will be exe-
cuted. The following example illustrates the implementation of an if-then-else test:

!if 0 <= {OFFSET}
!begin

!print positive offset -> shifting to the right
!call rightshift 0 {OFFSET}

!end
!else

!begin
!print negative offset -> shifting to the left
!call leftshift {OFFSET} 0

!end

!for variable startval endval [increment]
The !for command implements a for loop by iterating the loop variable specified as the first
argument from a start value up to and not exceeding a end value using, if specified, the given
increment or else the value 1. The command or command block immediately following the !for
command is executed for each of the values assigned to the loop variable.

E.g. the sequence
!for scenario 1000 5000 1000

!call generateStandardPlots {scenario}
will call the function generateStandardPlots for each of the loop value, i.e. it is equivalent
to the following commands:

!call generateStandardPlots 1000
!call generateStandardPlots 2000
!call generateStandardPlots 3000
!call generateStandardPlots 4000
!call generateStandardPlots 5000

The specified specified start, end and increment values can contain decimals. If the incre-
ment value is zero or has a different sign than the difference between end and start value, the
command or command block following the !for command is not executed at all.

!foreach variable val1 val2 val3 . . .
The !foreach command command executes the following command or command block once
for each of the values valX as arguments. For each given value, the specified variable is first
set to this value and then the line following the !foreach is executed.

E.g. the sequence
!foreach scenario 2000 2001 2002 3001 1000

!call generateStandardPlots {scenario}
will call the function generateStandardPlots for each of the loop value, i.e. it is equivalent
to the following commands:

!call generateStandardPlots 2000
!call generateStandardPlots 2001
!call generateStandardPlots 2002
!call generateStandardPlots 3001
!call generateStandardPlots 1000

!while value

13

!while val1 compop val2
The syntax of the !while client command corresponds to the !if client command. The com-
mand or command block following immediately the !while command will be executed for as
long as the specified condition is true.

In addition to the client commands which are described above, SEnC also recognizes any input line
which starts with # as a comment line and does not process it any further.

Variables

SEnC allows the definition of arbitrary string valued variables. The name of a variable is composed of
upper and lower case letters, digits and the underscore character (“_”), always starting with a letter.
Variable names are case sensitive.

Variable substitution occurs whenever a variable name enclosed in braces (e.g. “{MyVar} ”) occurs
in a command.

All SEnC variables are global, i.e. once defined they can be accessed from any command, regardless
of the context. In order to avoid variable collision conflicts when using variables in a function, SEnC
supports explicit variable instancing using the client commands !new and !delete . A !new com-
mand always creates a new instance of the variable with the given name. This new topmost instance
“hides” all lower level instances of the same variable (if any), so that all following !set commands
and variable substitutions will act on this instance until either another new instance is created on to
of the current one, or this instance is deleted. After a !delete command, the next lower instance, if
one exists, becomes again accessible.

This mechanism of variable instancing makes it possible to write functions that will not cause prob-
lems even if they are called from other contexts in which the same variable name is already used
for some other purpose. On the other hand, it is also possible to share variables between different
contexts and/or functions, which is the default behavior when no new instances are created/deleted.

As the variable instancing is based on the explicit calls to !new and !delete , it is the user’s (or
“SEnC programmer’s”) responsibility to make sure that, for normal use, for each !new command
there is a corresponding !delete command. Of course, a more advanced used can also use (or
“abuse”?) variable instancing for implementing more advanced mechanisms, such as e.g. a value
stack, where !new is used as push and !delete as pop .

SEnC creates no variable on its own. But some variables, once they have been created, will take a
special meaning:

ANSWERContains the last answer given to a !prompt command.

OUTPUTContains last output line received from the Enif server.

FILENAME Contains the name of current input file.

LINENUMBERContains the current line number in current input file.

NOECHOBy default, SEnC echoes all output it receives from the Enif server (except for the OK/KO
acknowledgments) to the standard output. If the variable NOECHOexists, the output received
from the Enif server is not echoed.

Note that in order to be able to access any of the above variables, it must first be explicitly created,
either on directly the command line or using a !set or !new client command.

14

A Simple Example

In the following we show how server commands, variable substitution and client commands can
be combined in order to create a small environment which can be used for generating Enif plots
automatically.

In the following header file named plotgen.sen , all necessary Enif parameters are created and
grouped to the corresponding Enif system parameters with which they have to synchronize their
values, and some functions are defined which can afterward be called to perform specific tasks:

new Integer Scenario
Scenario : $LoadScenario/

new String PlotConf
PlotConf : $LoadPlotConfiguration/

new Box View
View : $CurrentView/

new Click FullView
FullView : $FullView/

new Integer ExportEnlargementFactor
ExportEnlargementFactor : $ExportEnlargementFactor/

new String ExportScreenView
ExportScreenView : $ExportScreenViewToFile/

new Click PrintView
PrintView : $PrintCurrentViewNoSetup/

!function scenario SCENARIO
!begin

!if 0 < {SCENARIO}
Scenario[1] = {SCENARIO}
echo Scenario %<$ScenarioNumber>%: %<$ScenarioTitle>%

!end

!function view VIEW
!begin

!print Changing view to {VIEW} ...
!if full == {VIEW}

FullView = 1
!if airport == {VIEW}

View = -10;-3;-7;3;Airport;
!if cbd == {VIEW}

View = -3;-3;3;3;CBD;
!if kildonan == {VIEW}

View = -1.2;1.5;4.2;4.8;Kildonan corridor;
!end

!function plot CONFIGURATION
!begin

!print Loading {CONFIGURATION} ...
PlotConf = {CONFIGURATION}

!end

!function action

15

!begin
variable ACTION is defined outside!
!if prompt == {ACTION}

!prompt Continue?
!if wait == {ACTION}

!wait 5
!if print == {ACTION}
!begin

PrintView = 1
!print Printing view ...

!end
!end

!function export FILENAME
!begin

ExportScreenView = {FILENAME}
!if export == {ACTION}

!print Exporting view to file {FILENAME} ...
!end

The above header file does not produce itself any visible results, but it implements the five simple
functions which can afterward be called by the task definition file as follows:

!call scenario scenarionumber
Loads the scenario with the given number into the primary network.

!call view viewname
Changes to the current view to one of the predefined views full , cbd , airport or kildonan .

!call plot plotconfiguration
Loads the specified plot configuration file.

!call action [wait|prompt|print]
This function represents a general processing routine that can be called to perform some action
after a plot has been generated. Which action is taken by this function depends on the supplied
parameter. If it’s called with the parameter wait , it will wait for a few seconds before proceeding
with the following commands. If it’s called with the parameter prompt , it will issue a prompt
message and wait for a user input before proceeding. If it’s called with the parameter print , it
will generate a printout of the plot. Finally, if none of these parameters is specified, no action is
taken and the processing of the following commands continues.

!call export filename
Generates and exports an image file containing the current view. If needed the value of the
parameter ExportEnlargmentFactor can be changed before calling this function, in order
to change the resolution of the generated image file.

Based on the commands defined in the header file plotgen.sen it is now possible to define a
specific plot generation task quite easily. E.g. the following task file volumeplots generates auto
volume plots for three different views and one transit volume plot for the CBD:

!include plotgen.sen
!call scenario {SCENARIO}
!call plot autovol.e2p
!call action
!call view cbd
!call action

16

!call view kildonan
!call action
!call plot transitvol.e2p
!call view cbd
!call action

If we now call SEnC with the header and the task file, i.e.

senc -l volumeplots

The four plots will be generated one after the other for the default scenario of the data bank. But this
will be done very quickly and except for a rapidly flickering screen, not much will be seen.

We can now use variable substitution to define the scenario to be used with a command line argu-
ment of the form “SCENARIO=. . . ”, as well as the action to be taken for each plot with an argument
“ACTION=. . . ”. Note that for achieving the desired results, these variable specifications should be put
after the header file and before the task file.

Thus, the command

senc -l ACTION=wait SCENARIO=1000 volumeplots

will generate the same plots as before, but this time for the specified scenario 1000, and after each
plot it will pause for a few seconds to give the user a chance to look at it.

Similarly, the command

senc -l ACTION=print SCENARIO=3000 volumeplots

will generate the four plots for scenario 3000 and send them to the default printer. Reduced versions
of the four resulting printouts are shown below:

Some More Advanced Examples

The example in the preceding were chosen to be very simple so that a novice SEnC user can easily
understand them. In this section, we will show a more advanced example, in which the Enif server
commands and SEnC client commands are combined to perform more elaborate functions. This
section is really meant for the more advanced SEnC and Enif users. So if you are reading the first
time about SEnC and have not actually used SEnC yet, you can safely skip the following and move
on to the next section.

For this, let us consider the function view used in the preceding section. It could be called to change
the view to one of the named views which were coded right into the function code. Since each Enif
application contains itself a set of predefined views, let us try to rewrite the function view in such a
way that it actually looks up the the given view name in the Enif application and, it a predefined view
with the given name exists, sets the current view accordingly.

For implementing this task, we first have to know where Enif stores the predefined views. This is

17

done in an indexed Box type parameter called PredViews which is owned by the configurable object
containing the preferences. E.g. in my Winnipeg application, the PredViews parameter have the
following definition:

PredViews[0] = -10;-3;-7;3;Airport;
PredViews[1] = -1.2;1.5;4.2;4.8;Kildonan;
PredViews[2] = -3;-3;3;3;CBD;

The easiest way of accessing this information is using Enif’s parameter substitution mechanism via
the Enif server command echo , which was discussed earlier. Using e.g. a the command “echo
%<PredViews[1]%> ” will in our example data bank return the string “-1.2;1.5;4.2;4.8;Kildonan; ”
So what we need to do is loop through the indices of the PredViews parameter and find the one
with the given name.

Before actually writing the new version of our function view , we will need to define first an auxiliary
functions. This function is called get and allows retrieving one of the given arguments by its positional
numbers and set the specified variable to the corresponding argument:

!function get VAR POS V1 V2 V3 V4 V5 V6 V7 V8 V9
!begin

!set {VAR} = {V{POS}}
!end

Now we have all the ingredients to write the new version of our function view as follows:

!function view VIEWNAME
!begin

!new OUTPUT = 1
!new NOECHO = 1
!new PVIEW =
!new PNAME =
!new I =
!for I 0 999
!begin

echo %<PredViews[{I}]>%
!set PVIEW = {OUTPUT}
!if x == x{PVIEW}
!begin

!delete OUTPUT NOECHO PVIEW PNAME I
!return

!end
!set PNAME = {PVIEW}
!replace PNAME ;
!call get PNAME 5 {PNAME}
!if {VIEWNAME} == {PNAME}
!begin

View = {PVIEW}
!delete OUTPUT NOECHO PVIEW PNAME I
!return

!end
!end
!delete OUTPUT NOECHO PVIEW PNAME I

!end

The function first defines new instances of the variables OUTPUT, NOECHO, PVIEW, PNAMEand the
loop variable I . This means that we have to make sure that these variable instances are deleted
before returning from this function.

18

The main part of the function is a for-loop which iterates the variable I through the index values 0, 1,
2, . . .

For each index, the echo server command is used to write the corresponding view box value into the
SEnC special variable OUTPUT. If the value is empty, this indicates that the parameter PredViews
does not contains a value at the corresponding index, i.e. that we have searched through all prede-
fined views without having found the specified view. In this case, a message is issued and we return
from the function without having changed the view.

Once we have obtained a valid view box value, we now break it into its components xmin ymin xmax
ymax name [description] by replacing the separators ";" by blanks. We can now use the previously
defined function get to extract the view’s name from the fifth field and write it to the variable PNAME.

Finally, we have to compare the name of the current predefined view with the view which was asked
for. If the names match, we set the View parameter (remember, it is grouped to Enif’s current view!)
to the corresponding value, at which time the view displayed by Enif will change to the requested
view. The task is now completed and we can return from function view .

We can now e.g. try out the new function by calling it as to find and set the “Kildonan” view:
!call view Kildonan

The last example show how the SEnC / Enif framework can be used to do computations. As an
example, let’s try to write a function zoom which implements a concentric zoom-in or zoom-out of
Enif’s current view. The zoom factor is provides function argument, where values > 1 implying a
zoom-in and values < 1 a zoom-out operation.

Again, we first need to define some auxiliary functions. The first function is called shift and is used
to discard the first of a set of arguments and set a specified variable to the remaining arguments:

!function shift VAR V0 V1 V2 V3 V4 V5 V6 V7 V8 V9
!begin

!set {VAR} = {V1} {V2} {V3} {V4} {V5} {V6} {V7} {V8} {V9}
!end

The second function is in itself very interesting. It is called eval and sets the variable specified in
the first argument to the result of the expression given in the second argument. E.g. the command
“!call eval X (1+0.5*(7-2)) ” will set evaluate the expression (1 + 0.5 ∗ (7 − 2)) and set the
variable X to the result value, i.e. after the command we have X= 3.5.

!function eval VAR EXPRESSION
!begin

!new NOECHO = 1
!new OUTPUT = 1
new Expression eval_expression Nodes
new Selector eval_selector Nodes
eval_expression = {EXPRESSION}
eval_selector = index==1
check eval_expression
!iferror
!begin

!print Invalid expression {EXPRESSION}
!set OUTPUT = 0 0

!end
eval eval_expression eval_selector
!call shift {VAR} {OUTPUT}
!delete NOECHO OUTPUT
delete eval_expression

19

delete eval_selector
!end

Since SEnC does not have any client commands which perform calculation, function eval actually
uses Enif to perform this task. For this, an expression and a selector are set up accordingly and the
eval server command is used to actually perform the computation. The result is then extracted and
stored in the specified variable.

With the eval function, implementing the previously mentioned zoom function now becomes rela-
tively straight forward:

!function zoom ZOOMFACTOR
!begin

!new NOECHO = 1
!new OUTPUT = 1
echo %<$CurrentView>%
!new CVIEW = {OUTPUT}
!print CVIEW={CVIEW}
!replace CVIEW ;
!print {CVIEW}
!new XMIN =
!new YMIN =
!new XMAX =
!new YMAX =
!new DX =
!new DY =
!call get XMIN 1 {CVIEW}
!call get YMIN 2 {CVIEW}
!call get XMAX 3 {CVIEW}
!call get YMAX 4 {CVIEW}
!call eval DX {XMAX}-{XMIN}
!call eval DY {YMAX}-{YMIN}
!call eval XMIN {XMIN}+{DX}*(1-1/({ZOOMFACTOR}))/2
!call eval XMAX {XMAX}-{DX}*(1-1/({ZOOMFACTOR}))/2
!call eval YMIN {YMIN}+{DY}*(1-1/({ZOOMFACTOR}))/2
!call eval YMAX {YMAX}-{DY}*(1-1/({ZOOMFACTOR}))/2
!print View = {XMIN};{YMIN};{XMAX};{YMAX};zoom
View = {XMIN};{YMIN};{XMAX};{YMAX};zoom
!delete NOECHO OUTPUT CVIEW XMIN XMAX YMIN YMAX DX DY

!end

The zoom function can now be tested with the command
!call zoom 2
which will cause Enif to zoom-in by a linear factor of 2, i.e. showing only one quarter of the previously
displayed part of the network.

Availability of SEnC

A copy of SEnC program can be downloaded from the web site of the EMME/2 Support Center at
http://www.spiess.ch/emme2 , along with the PDF version of this paper.

In addition to binary executables for the major platforms supported by Enif (Microsoft Windows, Linux
and someday hopefully Sun), the source code of SEnC will also be available. This will allow users
who want to (or have to ;-) implement their own Enif clients to look at the inside details of how SEnC

20

has been programmed. SEnC has been written using the same programming environment which is
also used for the Enif program: it is written in C++ [5] and is using TrollTech’s Qt library [6].

The development of the SEnC client has only just started, so the functionality described in this paper
is by no means meant as the final version. Assuming that the program will be found useful by the
Enif community, the development of SEnC will continue and new features will be added to enhance
its possibilities.

Note that SEnC is not part of INRO’s official EMME/2 / Enif software product, but is a voluntary
contribution of the author. This means that its availability does not imply any obligation on the part
of INRO or the EMME/2 Support Center, nor does SEnC come with any other implicit or explicit
warranty.

Conclusions

Enif’s server mode provides a very powerful mechanism to access and control Enif from external
client programs. The SEnC program presented in this paper implements a base that allows script-
ing of simple sequential repetitive Enif tasks. Since SEnC does not depend on any particular Enif
functionality, but instead provides generic access to Enif’s internal configuration mechanism, there
are also no limits imposed by the SEnC program on what its input scripts can be used for. These
limits are essentially defined by Enif itself and by the Enif expertise of the person who writes these
scripts. . .

It is important to understand that SEnC is only one example of an Enif client. The way it is imple-
mented, its command line interface and the command processing are by no means meant as “the”
way of doing things. Different ways of adding scripting mechanisms to Enif may be more suitable for
certain applications. While e.g. EMME/2’s macro language is directly a part of the EMME/2 program
and, thus, can not be modified or replaced by the user, Enif clients are completely independent of the
Enif program. Such client can be written by anyone, using any programming language and implement
whatever user interface is felt to be the best for the task to be solved.

References

[1] INRO Consultants Inc. (2003) EMME/2 User’s Manual

[2] INRO Consultants Inc. (2003) Enif On-Line Documentation

[3] Spiess H. (2000) Enif - Toward a New Interface for EMME/2. EMME/2 Support Center, CH-2558 Aegerten,
Switzerland. available at http://www.spiess.ch/emme2 .

[4] Spiess H. (1984). Contributions à la théorie et aux outils de planification de réseaux de transport urbain.
Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Centre de recherche sur les
transports, Université de Montréal, Publication 382.

[5] Stroustrup B. (1999). The C++ Programming Language. Third Edition. Addison-Wesley, ISBN 0201889544.

[6] TrollTech AB (2003). QT: The Official Documentation. New Riders Publishing, ISBN 1578702097.

21

