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Abstract

In the past, many different models using observed link volumes to estimate or adjust
O-D matrices have been proposed. While these models differ greatly in their mathematical
formulation and interpretation, they all share the fact that using them for real size networks
is difficult, if not impossible. This is due to the complexity of the computations that are
involved and the need for very specialized software to carry them out.

In this paper, we present a new gradient based model, which can and has been applied
to large scale networks. Mathematically, the model is formulated as a convex minimization
problem where, by following the direction of the steepest descent, we ensure that the original
O-D matrix is not changed more than necessary.

We show how this demand adjustment model can be implemented without the need to
develop any new software, but only by using existing features of a standard transportation
planning package (EMME/2). Since one iteration of the adjustment procedure consists
essentially in two equilibrium assignments on the considered network, the method can be
applied even to large scale networks and matrices.

So far, our model has been applied successfully in several urban and national scale projects
in Switzerland, Sweden and Finland, using networks with up to 522 traffic zones and 12460
links. Some results of these studies will be shown.
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1 Introduction

In almost all transportation planning applications, the input data which is the most difficult and
expensive to obtain is the origin-destination demand matrix. Since the demand data cannot be
observed directly, it must be collected by carrying out elaborate and expensive surveys, involving
home- or road-based interviews or complicated number plate tagging schemes. By contrast,
observed link volumes can be obtained easily and with reasonable precision by simply counting
the traffic at certain countpost links, either manually or automatically, using mechanical or
inductive counting devices.

Thus, it is not surprising that a considerable amount of research has been carried out to
investigate the possibility of estimating or improving an origin-destination demand matrix with
observed volumes on the links of the considered network.

Many models have been proposed in the past, see e.g . Van Zuylen and Willumsen (1980),
Van Vliet and Willumsen (1981), Nguyen (1982), Van Zuylen and Branston (1982) and Spiess
(1987). These models, while being very interesting from a theoretical point of view, have been
of relatively little practical relevance so far. This is due to immense computation time and
storage requirements that arise in practical implementations and which limit these approaches
to very small problem sizes only. As to our best knowledge, none of these methods has so far
been successfully applied to large scale networks with hundreds of traffic zones and thousands
of network links.

Most of these ”traditional” approaches can be formulated as convex optimization problems
in which the objective function corresponds to some distance function f(ĝ, g) between a ”a-
priori” demand matrix ĝ and the resulting demand g. The constraints are then used to force the
assigned volumes va to correspond to the observed volumes v̂a on the count post links a ∈ Â.
(Note that in some formulations, such as Van Zuylen and Branston (1982), these constraints are
relaxed and, thus, appear as additional terms in the objective functions.)

In the following sections, we describe a new model which is suitable for large scale appli-
cations. We show how this model can be implemented without the need to develop any new
programs, but by using the standard version of the transportation planning package EMME/2.
Finally, we summarize the results of some urban and national scale applications in which the
new model has been used recently.

2 The Gradient Approach

In this paper a new type of model is proposed. It is also formulated as an optimization problem,
but here the objective function to be minimized is a measure of distance between observed and
assigned volumes. The simplest function of this type is the square sum of the differences, which
leads to the following convex minimization problem:

minZ(g) =
1
2

∑
a∈Â

(va − v̂a)2 (1)

subject to
v = assign(g) (2)
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where the “pseudo”-function assign(g) is used to indicate the volumes resulting from an assign-
ment of the demand matrix g. Of course, the particular assignment model used must correspond
to a convex optimization problem, in order for (1) to be convex.

For the purpose of this paper, we shall assume that the term assignment refers to an equi-
librium assignment, where a set of non-decreasing link cost functions sa(va) on all links of the
network a ∈ A ensures the convexity of the model. This type of equilibrium assignment prob-
lem has been extensively studied and can be solved efficiently, either by the successive linear
approximation (Franck and Wolfe, 1956; Le Blanc et al., 1975; Florian, 1977) or the more recent
PARTAN method (Florian et al, 1987; Arezki and Van Vliet, 1990).

Since the matrix estimation problem as formulated in (1) is highly underdetermined, it
usually admits an infinite number of optimal solutions, i.e. possible demand matrices which
all reflect the observed volumes equally well. Of course, in the actual planning context, we
expect the resulting matrix to resemble as closely as possible the initial matrix, since it contains
important structural information on the origin-destination movements. Therefore, just finding
one solution to problem (1) is clearly not enough.

“Traditional” models eliminate (at least partially) this problem of degeneracy by using an
objective function Z(g) which corresponds to a measure of distance f(ĝ, g) and imposing the
equality between observed and assigned values as constraints. While this approach indeed pro-
vides a mean to choose the “best” demand matrix (according to some criterion) among those
satisfying the conditions on the observed volumes, it also increases significantly the complexity
of the problem to be solved and, thus, contributes heavily to the fact that these models are so
difficult to apply to large scale problems.

If we would have a solution algorithm which inherently finds a solution close to the starting
point, we could leave the objective function (1) as is. Fortunately, the gradient method1, also
called the method of steepest descent, has exactly this property that we look for. It follows
always the direction of the largest yield with respect to minimizing the objective function and,
thus, it also assures us not to deviate from the starting solution more than necessary.

In the simplest case, when taking the gradient directly with respect to the variables g, the
gradient method could be formulated as follows

g`+1
i =


ĝi for ` = 0,

g`
i − λ`

[
∂Z(g)
∂gi

]
g`

i

for ` = 1, 2, 3, . . .
(3)

where the λ` have to be chosen small enough to ensure that the path followed by the g` is
sufficiently near to the true gradient path. Note that we use the index i to denote an origin-
destination pair (O-D pair), and that the set of all active O-D pairs is I.

However, if the gradient is based on the variables g as in (3), this implies that changes to the
demand matrix are measured in an absolute way, i.e. number of trips, regardless of the relative
change this would mean to the initial matrix. In particular, this would imply that O-D pairs
with ĝi = 0 would be affected by the adjustment as well.

1 We shall use the term gradient throughout this paper. However, if the the link cost funtions sa(va) are not
strictly increasing, there might be points at which the objective function Z(g) is not continuously differentiable.
In this case, the occurrencies of the term gradient should be replaced by the term subgradient.
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For a more realistic approach the gradient should be based on the relative change of the
demand, which can be written as

g`+1
i =


ĝi for ` = 0,

g`
i

(
1− λ`

[
∂Z(g)
∂gi

]
g`

i

)
for ` = 1, 2, 3, . . .

(4)

Note that when the relative gradient is used, the algorithm becomes multiplicative in ghi.
Therefore, a change in demand is proportional to the demand in the initial matrix and, in
particular, zeros will be preserved by the process.

Before turning our attention to the evaluation of the gradient ∂Z(g)
∂g , let us first look at the

decomposition of the link volumes va into path flows. Let k ∈ Ki denote the set of paths used
for each O-D pair i, ieI, and hk the vector of the corresponding path flows. The link volumes
can then be expressed as

va =
∑
i∈I

∑
k∈Ki

δakhk, a ∈ A, (5)

where

δak =


0 if a /∈ k (link a not contained in path path k),

1 if a ∈ k (link a is contained in path path k).
(6)

Using the path probabilities instead of the path flows

pk =
hk

gi
, k ∈ Ki, i ∈ I, (7)

equation (5) can be rewritten as

va =
∑
i∈I

gi

∑
k∈Ki

δakpk, a ∈ A. (8)

We can now proceed to compute the gradient ∂Z(g)
∂g . Taking the derivative of (1), we obtain

∂Z(g)
∂gi

=
∑
a∈Â

∂va

∂gi
(va − v̂a) i ∈ I. (9)

Assuming that the path probabilities are locally constant, we obtain from (8)

∂va

∂gi
=
∑

k∈Ki

δakpk, a ∈ A, i ∈ I, (10)

which, when inserted into (9), yields

∂Z(g)
∂gi

=
∑
a∈Â

∑
k∈Ki

δakpk(va − v̂a) =
∑

k∈Ki

pk

∑
a∈Â

δak(va − v̂a) i ∈ I. (11)

In order to implement the gradient method 4, we also need to provide values for the step
lengths λ`. Choosing very small values for the step length has the advantage of following
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more precisely the gradient path, but has the disadvantage of requiring more steps. On the
other hand, when choosing too large values for the step length, the objective function Z(g) can
actually increase and the convergence of the algorithm would be lost. Thus, the optimal step
length λ∗ at a given demand g can be found by solving the one-dimensional subproblem

min
λ

Z

( (
gi(1− λ

∂Z(g)
∂gi

)
) )

(12)

subject to

λ
∂Z(g)
∂gi

≤ 1, for all i ∈ I with gi > 0. (13)

Since the objective function Z is expressed in terms of the link volumes va, we need to know
how these change along the gradient direction. This can be obtained by applying the chain rule
to (10)

v′a =
dva

dλ
=
∑
i∈I

dgi

dλ

∂va

∂gi
= −

∑
i∈I

gi

∑
k∈Ki

pk

∑
â∈Â

δak(vâ − v̂â)

∑
k∈Ki

δakpk

 . (14)

Solving the minimization problem (12) can be done by finding the zero of the derivative. Ap-
plying again the chain rule we obtain the derivative as

dZ(λ)
dλ

=
∑
a∈Â

dva

dλ

∂Z

∂va
=
∑
a∈Â

v′a(va − v̂a + λv′a). (15)

This leads directly to the optimal step length

λ∗ =

∑
a∈Â

v′a(v̂a − va)∑
a∈Â

v′a
2 , (16)

which, in order to be feasible, needs only to be checked against and eventually be bounded by
(13).

With the equations (11), (14) and (16), we have all the necessary results in order to solve
the matrix adjustment problem (1) using the relative gradient method (4).

3 Implementation

One major practical difficulty for applying matrix estimation models in practice is due to the
fact that most models can only be implemented in highly specialized computer programs which
are difficult to obtain and operate, if they exist at all.

In this section we show that the gradient method can be implemented using the standard
version of the widely used EMME/2 transportation planning software (Spiess 1984; INRO 1989).
Since Release 3.0 of EMME/2 (released October 1987), a feature of the car equilibrium assign-
ment module known as Additional Options Assignment is available. The aim of this feature is
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to provide a general framework for the simultaneous computation of various path dependent
informations which might be needed in addition to the usual assignment results.

Let us briefly look at the mathematical interpretation of this feature of EMME/2. (The
emphasized terms in the paragraphs below correspond to the nomenclature used in EMME/2.)

For each path generated during the normal equilibrium assignment, an additional path at-
tribute ck is computed by combining the additional link attributes ca of the link on the path with
the path operator ⊗ (which can be any operator such as

∑
,
∏

, min or max)

ck =
⊗
a∈k

ca, k ∈ Ki, i ∈ I. (17)

Checking the path attribute ck against the specified path threshold interval (C,C) determines if
the path is included in the subsequent slave assignment of the additional demand ğ. This way,
the set of active paths K̃ is defined.

The results of the additional options assignment are the additional volumes

ṽa =
∑
i∈I

ği

∑
k∈K̃i

δakpk, (18)

and the additional attribute matrix, which can be one of the following

ci =
∑

k∈Ki

pkck, (path attributes) (19)

c̃i =
∑

k∈K̃i

pkck, (active path attributes) (20)

g̃i =
∑

k∈K̃i

pkği, (active addl. demand) (21)

ti = ği

∑
k∈K̃i

pkck. (active path attribute weighed by addl. demand) (22)

Once we have expressed the additional options feature of EMME/2 in mathematical terms, it
is evident that the framework does not only serve for the “usual” applications, such as link select
analysis, partial assignments, or the computation of cost or distance matrices. It can also be
used, as is, to implement the gradient method for the matrix adjustment problem, as described
in the preceding section. The following paragraphs give an outline how this is achieved.

At the beginning of each iteration ` of the gradient method, a “plain” equilibrium assignment
(i.e. not using the additional options feature) is carried out with the current demand, in order
to compute the link volumes vai, a ∈ A. With these volumes, the additional link attribute ca is
computed using the network calculator as

ca =

{
va − v̂a if a ∈ Â,
0 else.

(23)

The gradient matrix ∂Z(g)
∂g defined in (11) is next computed with (22) as additional attribute

matrix. This matrix is then used as additional demand matrix ğ and the variables v′a of (14) are
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computed according to (18). The optimal step length (16) is evaluated again with the network
calculator. Finally, the demand matrix is updated using the matrix calculator according to (4).

Using the macro feature of EMME/2, which allows the different modules of EMME/2 to be
combined into more complex procedures, the entire algorithm can be packaged into one macro
command, hiding all the implementational details from the user.

In terms of computation times, each iteration of the gradient method corresponds to one
equilibrium assignment without additional options and two equilibrium assignments with addi-
tional options, plus some minor matrix and network calculations. While this is a substantial
effort for every iteration, it is still doable even for the largest networks that can be handled in
EMME/2, i.e. networks of up to 1600 traffic zones (2,560,000 O-D pairs!) and 32000 links.

4 Applications

During 1988 and 1989, we had the opportunity to test the proposed gradient method and apply
it in practice in several studies. The test example used was based on the standard EMME/2
Winnipeg Demonstration Database. The applications include two urban applications for the
cities of Bern and Basel and the two national road networks of Sweden and Finland2. The
table below gives some characteristics for the applications: number of traffic zones, number
of network links, number of links with observed volumes, the R2-value between observed and
assigned volumes using the initial demand, the R2-value after the adjustment, and, finally, the
number of gradient iterations that were carried out for the adjustment.

Study Zones Links Counts initial R2 final R2 Iter.
Winnipeg 154 2983 70 0.834 0.971 11
Basel 330 220 229 0.923 0.970 6
Bern 226 2676 338 0.960 0.995 20
Sweden 522 3879 334 0.827 0.992 20
Finland 469 12476 5759 0.491 0.886 30

Table 1: Applications.

As an example, the scattergrams of observed versus assigned volumes before and after the
adjustment are shown in Figures 1 and 2 below for the Swedish national road network applica-
tion. In Figure 3, the value of the objective function Z(g`) is shown for all 20 iterations. The
computations were carried out on a SUN SPARCstation 1 computer. On this equipment, each
iteration of the gradient method took about 25 minutes of computing time.

2 These applications were carried out in collaboration with Rapp AG, Basel (Basel and Bern networks), Transek
AB, Stockholm (Swedish national road network) and Finnmap OY, Helsinki (Finnish national road network).
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Figure 1: Assigned vs observed volumes before adjustment.

In all applications that were carried out so far, the gradient method was found to perform
very well. However, there are some important practical points to consider before applying the
algorithm:

• This model will adjust the demand matrix in order to better reflect the observed volumes.
It should only be applied if all the other data which are used for the assignment have
been extensively validated. The adjustment procedure will attempt to compensate any
remaining error in the network coding, the volume delay functions or the observed volumes
by modifying the demand matrix. This, of course, will not correct the error, but just add
another error on top of it.

• The selection of the count post links is very important. Before applying the adjustment
procedure, it is good practice to perform a rigorous count post analysis (this can also be
carried out very elegantly using the additional options assignment feature of EMME/2).
The count posts links should cover the network sufficiently, so that most trips will at least
be counted once. Also the count post links should not carry a lot of local (= intrazonal)
trips, since these will not be accounted for in the assignment. Finally, great care must be
taken when the count post links are close to important connector links, since these are
aggregated abstract trip ends which do not represent the true final destinations.
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Figure 2: Assigned vs observed volumes after adjustment.
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Figure 3: Values of the objective function Z(g`).
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• Do not expect the observed volumes necessarily to form a consistent set. Inconsistencies
can be due to inaccurate or non-simultaneous counts. But besides the imprecisions of
the actual counting, inconsistencies can also arise from the zonal aggregation itself, which
forces all trip ends to be at the centroid nodes. The counted volumes, however, are based
on the true origin and destination of every trip. One should therefore not expect that the
objective function Z must necessarily converge to zero.

• Once the adjustment has been carried out, it is crucial to analyze the results carefully and
critically. We expect the change in the demand to be small and unsystematic. Large or
systematic changes will almost always be an indication of a problem in the input data.
Also, the comparison of the trip length histograms before and after the adjustment has
proofed to be very valuable. In all applications so far the analysis of the first runs of the
gradient method has lead to the discovery of network coding problems - even though some
of the networks have been used for years.

• Every time corrections are made to the input data, the gradient method should be restarted
with the initial demand matrix. Technically, it would be possible to make changes to the
network or the observed volumes between iterations of the gradient method and then
continue. But this would defeat the key property of the gradient method, which is to find
a solution with minimal change to the initial demand.

5 Conclusions

We have formulated a new type of matrix adjustment model in which the steepest descent prop-
erty of the gradient method is used to overcome the degeneracy problem. Since this method will
inherently find a solution which is close to the starting point, it is not necessary to address ex-
plicitly the degeneracy of the solutions in the objective function. The simplicity of the proposed
method makes it applicable even to large scale problems.

In this model, the path probabilities pk need not to be stored explicitly, since the gradient
matrix ∂Z(g)

∂g can be built up directly as a by-product of the assignment. Therefore, the gradient
model is not restricted to proportional assignments models, but is equally well applicable with
the equilibrium assignment.

The method can be implemented without the need of any specialized software, but by just
using the standard version of the EMME/2 transportation planning system. Therefore the
gradient approach presented here is as much of theoretical interest as of practical importance,
since it offers a simple analytic alternative to the still widely used practice of “manual demand
matrix calibration”.

Even though all applications so far were using equilibrium assignments on highway networks,
the gradient approach which we have developed here is general enough to be applied to different
assignment models. In particular, it could also be used in the context of transit networks. In this
case, instead of the highway network equilibrium assignment, the transit assignment based on
optimal strategies (see Spiess, 1984; Spiess and Florian, 1989) would be used. The mathematical
formulation for the transit case, as well as some tests with real applications will be the topic of
further research.
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Finally, it is important to note that the objective function (1) used in this paper is only the
simplest of many possible choices. The same gradient approach can equally well be used to solve
problems with any other objective function of the form

Z(g) = Z1(v(g), v̂) + Z2(g, ĝ). (24)

Models of this type have been proposed by Willumsen (1984) and Brenninger-Göthe et al.
(1989). The application of the gradient method in this more general context will be the topic
of a forthcoming paper.
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